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RIGIDITY AND DEFORMATION SPACES OF
STRICTLY CONVEX REAL PROJECTIVE

STRUCTURES ON COMPACT MANIFOLDS

INKANG KIM

To my child

Abstract
In this paper we show that if two strictly convex, compact real projec-
tive manifolds have the same marked length spectrum with respect to the
Hilbert metric, then they are projectively equivalent. This is a rigidity for
Finsler metric with a special geometric structure. Furthermore we prove
an analogue of a Hitchin’s conjecture for hyperbolic 3-manifolds, namely
the deformation space of convex real projective structures on a compact
hyperbolic 3-manifold M is a component in the moduli space of PGL(4,R)-
representations of π1(M).

1. Introduction

In the Riemannian case, it is conjectured that two compact nega-
tively (or nonpositively) curved manifolds are isometric if they have the
same marked closed geodesic lengths. The conjecture is true for surfaces
[16, 41]. If one manifold is negatively curved locally symmetric, then
the conjecture is true by [7, 29]. If one manifold is of rank at least two,
it is proved by [17]. When both manifolds are locally symmetric but
are of infinite volume, see [33, 19]. But in the non-Riemannian case the
situation is much more complicated. In this paper we restrict the prob-
lem to real projective manifolds equipped with Hilbert metrics. Since
the manifolds have a real projective geometric structure other than the
Finsler metric we can use the extra information to attack the problem.
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The main results we want to prove are:

Theorem I. LetM and N be compact, strictly convex real projective
manifolds with Hilbert metrics. If they have the same marked length
spectrum then they are projectively equivalent.

The other theorem is an analogue of a Hitchin’s conjecture [30] in
dimension 3. The Teichmüller component is defined to be the compo-
nent of a representation variety R(π1(M),PGL(n,R)) which contains
the hyperbolic holonomy representations where the = representation
variety is Hom(π1(M),PGL(n,R))/PGL(n,R). Denote by B(M) the
set of strictly convex real projective structures on the manifold M and
B0(M) a component of B(M) containing hyperbolic structures.

Theorem II. The holonomy map

h : B0(M)→R(π1(M),PGL(4,R))

is a homeomorphism onto the Teichmüller component if M is a hyper-
bolic 3-manifold. Here h is a map associating each convex real projective
structure to its holonomy representation.

Note that due to [31] (Section 5), B0(M) has positive dimension for
certain hyperbolic manifolds M . Using Theorem I we give a corollary.

Corollary 0. Let M = C1/Γ1 and N = C2/Γ2 be compact strictly
convex real projective n-manifolds. Then there exists a cross-ratio pre-
serving equivariant homeomorphism between ∂C1 and ∂C2 if and only
if M and N are projectively equivalent.

This type of theorem is known between a negatively curved locally
symmetric manifold and a quotient of a CAT(−1) space [9, 34].

Plan of the paper. Theorem I is proved in Section 8 where Proposi-
tion 2 and Theorem 2 give an algebraic proof of it. Corollary 0 is proved
in Section 9 where cross-ratio and other techniques are developed. The-
orem II is proved in Section 10. Theorem 1 in Section 4 describes the
general limit of nonparabolic discrete faithful representations of a cen-
terless, nonsolvable group in PSL(n,R). To prove this we use some
techniques in symmetric space SL(n,R)/SO(n). Proposition 6 in Sec-
tion 10 shows that if such representations come from the holonomy of
convex real projective structures on a closed hyperbolic 3-manifold, the
limit representation is nonparabolic also. So the limit real projective
structure does not degenerate. Using these, Theorem 4 gives a final
proof of Theorem II.
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2. Preliminaries

Let x1, x2, x3, x4 be four distinct points in R
n.

Definition 1. The cross-ratio of four points is defined by

[x1, x2, x3, x4] =
|x1 − x3||x2 − x4|
|x1 − x4||x2 − x3|

where | | is the Euclidean metric.

In 1894 D. Hilbert discovered a generalization of the hyperbolic ge-
ometry, for which geodesics are still Euclidean segments ([13] IV. 28,
[11, 12]). Let Ω be a bounded convex domain in R

n.

Definition 2. Let x, y be two points in Ω. The Hilbert distance
between x and y is:

d(x, y) = log [x∗, y∗, y, x]

where x∗, y∗ are on the boundary of Ω which lie on the line joining x
and y such that x is between x∗ and y.

If we add d(x, x) = 0, then this is a complete metric which induces
the same topology in R

n. For the proofs, see [10, 2]. Suppose C is
strictly convex. This Hilbert metric is known to be Finslerian [36, 37]
with the following properties:

(1) There is a unique geodesic between two points in Ω. See [29].

(2) There is a unique geodesic between two points in the boundary of
Ω.

(3) The geodesics are straight lines in Euclidean sense.

If C is strictly convex, the set of points at positive distance from a
convex set is strictly convex, so the spheres are convex [10]. The asso-
ciated Finsler metric is not degenerate if the boundary has a nondegen-
erate Hessian and in this case the flag curvature is a negative constant
[22, 21]. Benzécri [6] proved that this does not admit a compact quotient
unless it is an ellipsoid.

3. Real projective structure

A real projective structure on a differentiable manifold M is a max-
imal atlas {Ui, φi} into RP

n such that the transition functions φj ◦φi−1
are restrictions of projective automorphisms of RP

n.
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Definition 3. A convex real projective manifold M is Ω/Γ
where Ω is a convex domain in RP

n containing no projective line and Γ
is a discrete group of Aut(RP

n).

Note that Sn inherits the projective structure from the double cover-
ing map of Sn onto RP

n. Then we can situate Ω in the upper-hemisphere
and project it onto the hyperplane R

n−1 = {x ∈ R
n|xn = 1}.

In general, a projective structure gives rise to a map, called a devel-
oping map and denoted dev, from the universal cover M̃ of M to RP

n

and a holonomy homomorphism h from π1(M) to PGL(n+1,R) so that
the following diagram commutes.

M̃
dev−−−→ RP

n�γ

�h(γ)

M̃
dev−−−→ RP

n

The developing map is unique up to post-composition by an element
g in PGL(n+1,R) and correspondingly the holonomy homomorphism is
unique up to conjugate by g. If the developing map is a homeomorphism
onto its image, then M = dev(M̃)/h(π1(M)).

Two projective manifolds M and N are considered to be equal if
there exists a projective isomorphism between them, i.e., a diffeomor-
phism which is locally in PGL(n+ 1,R).

Formally a deformation space of RP
n structures on a fixed manifold

M is defined as follows, see [24]. Let S be a fixed smooth manifold. Let
x ∈ S and S̃ be a fixed universal covering of S. Then the set of triples
(M,f, ψ) where M is an RP

n manifold, f is a diffeomorphism from S
to M and ψ is a projective germ at f(x), is equivalent to the set of
development pairs (dev, h).

We mod out the set of triples up to equivalence relation that

(M1, f1, ψ1) ∼ (M2, f2, ψ2)

iff there exist RP
n isomorphism φ :M1→M2 such that φ ◦ f1 is isotopic

to f2 by an isotopy fixing x and φ∗(ψ2) = ψ1. Denote D(S) the set of
equivalence classes of such triples. Using the C1 topology on developing
maps, we give the set D(S) a topology which is Hausdorff. Then the
PGL(n,R)-equivariant continuous map

hol : D(S)→Hom(π1(S),PGL(n,R))
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is a local homeomorphism. We will call this the holonomy theo-
rem. See [43] (Proposition 5.1), [40] and [24]. We denote RP

n(S) =
D(S)/PGL(n+ 1,R) the set of real projective structures on S. Denote
B(S) ⊂ RP

n(S) the set of convex real projective structures and B0(M)
a component of B(M) containing hyperbolic structures. When n = 3,
Goldman [25] showed that the set of convex RP

2 structures on a closed
surface M with χ(M) < 0 is homeomorphic to an open ball of dimen-
sion −8χ(M) in Hom(π1(M),PGL(3,R))/PGL(3,R) by the map which
associates a projective structure to its holonomy representation.

Suppose M = C1/Γ1 and N = C2/Γ2 are compact convex real pro-
jective manifolds such that Γ1 and Γ2 are conjugate by an element g
in PGL(n,R). Then g(C1) = C2 and g descends to a projective iso-
morphism between M and N . We will use this fact to prove the main
theorem.

If we denote SL−(n,R) to be the set of matrices of determinant −1,
then PGL(n,R) = PSL−(n,R) ∪ PSL(n,R) where PSL(n,R) denotes
SL(n,R)/± I when n is even. Note that PSL(n,R) is the identity com-
ponent of the isometry group of the symmetric space SL(n,R)/SO(n).
In this paper, we will very often take a subgroup of index two so that
the holonomy representation lies in PSL(n,R).

Let Γ = π1(M) be fixed and denote R the space of representations
Hom(Γ,PSL(n,R)). It is well-known that R is an algebraic variety in
PSL(n,R)k where k is the number of generators of Γ. In this note we
are interested in Rir the subset of irreducible representations. We just
record the following lemma about the conjugate action of PSL(n,R) on
Rir.

Lemma 1. The conjugate action of PSL(n,R) on Rir is proper and
free.

Proof. Let ev : Rir→PSL(n,R)k be an evaluation map on the set
of generators. Denote the embedding of Rir in PSL(n,R) by U .

First we prove the action is free. If gρg−1 = ρ, since ρ is irreducible,
g should be in the center of PSL(n,R) which is the identity.

Now we show that the action is proper. Take the Cartan decom-
position SL(n,R) = KA+K where K = SO(n) and A+ is the set of
positive real diagonal matrices (λ1, . . . , λn) such that λ1 ≥ · · · ≥ λn
and λ1 · · ·λn = 1. Then we have to show that for any compact set
C ⊂ U the set G(C) = {g ∈ PSL(n,R)|gCg−1 ∩ C �= ∅} is com-
pact. It is obvious that we can take C to be K invariant by en-
larging it. Then since k1ak2Ck−12 a

−1k−11 = k1aCa
−1k−11 ∩ C �= ∅ iff
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aCa−1 ∩ k−11 Ck1 = aCa−1 ∩ C �= ∅ it suffices to show that G(C) ∩ A+
is compact. Suppose not. Then there exists sequence ai such that
aiCa

−1
i ∩ C �= ∅ and λi1→∞ where λil denotes the lth eigenvalue of ai.

Note here that λin→0 necessarily. Since C is compact the absolute value
of every component of a matrix in C is bounded from above byM . Then
(amgpa−1m )ij = λm

i
λm

j
(gp)ij where gp = ((gp)ij), (g1, . . . , gk) ∈ C.

Suppose λmj →∞ as m→∞ for j = 1, . . . , n − 1. Then for g =
(g1, . . . , gk) ∈ C such that amga−1m ∈ C∣∣∣∣λmkλmn (gt)kn

∣∣∣∣ < M
for k = 1, . . . , n − 1, t = 1, . . . , k. Since λm

k
λm

n
→∞, (gt)kn = 0 for k =

1, . . . , n− 1, t = 1, . . . , k. This shows that gt fixes (0, . . . , 0,R). This is
a contradiction to the fact that g is irreducible.

Similarly if λmj →∞ as m→∞ for j = 1, . . . , n − 2 and λmn , λ
m
n−1

remain bounded, then for g ∈ C such that amga−1m ∈ C, g should fix
(0, . . . , 0,R,R). This is again a contradiction to the irreducibility. The
other cases are similar. This shows that G(C) is compact, so the action
is proper. q.e.d.

4. Nonparabolic representations into PSL(n,R)

Let Γ = π1(M) be fixed and S be a generating set of it. Denote X
a symmetric space SL(n,R)/SO(n) for n ≥ 3 and d a standard metric
on it. For a representation ρ : Γ→PSL(n,R), one defines

dρ : X→R
+

x→ sup
s∈S
d(x, ρ(s)x).

Since the distance function is convex, dγ(x) = d(x, γx) is a convex
function, so is dρ. One defines the minimum translation length of ρ by

µ(ρ) = inf
x∈X

dρ(x).

It immediately follows from the definition of µ that if ρi→ρ then
lim supµ(ρi) ≤ µ(ρ). The reason is that since dρi→dρ uniformly on
any compact set C, for a given ε > 0, there exists N such that

dρi(x) ≤ dρ(x) + ε, i ≥ N,x ∈ C.
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So infx∈C dρi(x) ≤ infx∈C dρ(x) + ε, i ≥ N . Since this is true for any
compact set C, it follows that

lim supµ(ρi) ≤ µ(ρ).

If one sets Minρ = {x ∈ X|dρ(x) = µ(ρ)}, then it is a closed convex
set of X. The ideal boundary ∂X is the set of equivalence classes of
geodesic rays under the equivalence relation that two rays are equivalent
if they are within finite Hausdorff distance each other.

Let γ be isometry acting on X.

(1) We say γ is elliptic if γ has a fixed point in X.

(2) We say γ is hyperbolic if dγ(x) = d(x, γx) assumes the infimum
and l(γ) = infx∈X dγ(x) > 0. In this case γ has an invariant
geodesic along which it translates.

(3) We say γ is parabolic if dγ does not assume the infimum l(γ).
Specially if the infimum is positive, γ is called mixed parabolic.
In this parabolic case γ fixes a point x in ∂X and leaves invariant
a horosphere based at x. If xi→x along a geodesic, then dγ(xi) >
l(γ) and dγ(xi)→l(γ).

See [1, 35] for the details.
We begin with some basic facts about SL(n,R). The symmetric

space X can be identified with the set of positive definite symmetric
matrices with determinant 1 and SL(n,R) acts on X by conjugation
x→gxgt. The isotropy group of I is SO(n). So X = SL(n,R)/SO(n).
Fix a base point I = I · SO(n) in X once and for all. Then the Cartan
decomposition of the Lie algebra g of G = SL(n,R) is

g = k + p

where k is skew-symmetric matrices and p is symmetric matrices with
trace 0. The Cartan involution is Y→− Y t. 〈Y,Z〉 = trace(Y Zt) is a
positive definite inner product on g which is a usual inner product on
R

n2
. We want to relate the canonical action of SL(n,R) on R

n with
parabolic subgroups of SL(n,R).

Any point y ∈ ∂X is realized as γY (∞) where γY is a unit speed
geodesic such that γY (0) = I · SO(n), γ′Y (0) = Y and Y ∈ p with
|Y | = 1. In other words, the unit tangent bundle T 1I (X) is identified
with ∂X. Let λ1(Y ) > · · · > λk(Y ) be the distinct eigenvalues of Y
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and Ei(Y ) be the eigenspace of Y in R
n corresponding to λi(Y ). Set

Vi(Y ) = ⊕i
j=1Ej(Y ). We obtain a flag

V1(Y ) ⊂ · · · ⊂ Vk(Y ) = R
n.

If mi denotes the dimension of Ei(Y ), since Y is traceless and has norm
1, the following two conditions are satisfied:

(1)
∑k

i=1miλi(Y ) = 0;

(2)
∑k

i=1miλi(Y )2 = 1.

Then it is easy to see that ∂X can be identified with the set of flags
V1(Y ) ⊂ · · · ⊂ Vk(Y ) = R

n such that λ1(Y ) > · · · > λk(Y ) and the two
conditions above are satisfied.

If F = (V1, . . . , Vk) is a flag, then g ∈ SL(n,R) acts on F by gF =
(gV1, . . . , gVk). For g ∈ SL(n,R), (λ1(Y ), . . . , λk(Y )), (V1(Y ), . . . ,
Vk(Y ) an eigenvalue-flag pair of some point y ∈ ∂X, it is not diffi-
cult to see that λi(gy) = λi(y) and F (gy) = g(F (y)). See for example
[20]. So gy = y iff g(F (y)) = F (y). A subgroup H ⊂ SL(n,R) is called
parabolic if Hy = y for some y ∈ ∂X. Then we have:

Corollary 1. A subgroup H ⊂ SL(n,R) is parabolic iff the action
of H on R

n is reducible, i.e., it leaves invariant a proper subspace.

Proof. If Hy = y, H fixes a flag V1(Y ) ⊂ · · · ⊂ Vk(Y ) = R
n.

Since k ≥ 2, H leaves invariant V1(Y ), so the action of H on R
n is

reducible. Conversely if the action of H is reducible, there exists a
proper subspace V1 of R

n which is not 0 and left invariant by H. Then
one can find y ∈ ∂X such that (λ(y), F (y)) is an eigenvalue-flag pair
corresponding to V1 ⊂ R

n for some λ(y). Then any element in H fixes
F (y), so H fixes y. q.e.d.

Next we prove some easy lemmas about the Iwasawa decomposition
of SL(n,R).

Lemma 2. In a Iwasawa decomposition SL(n,R) = KAN where
K is an isotropy group of x0, Ax0 is a maximal flat and N fixes a Weyl
chamber W of Ax0 at infinity, let M be a subgroup of K which fixes
W (so fixes a maximal flat Ax0 pointwise). Then MA is an abelian
subgroup.

Proof. Let SL(n,R) act on the set X of positive definite symmetric
matrices with determinant 1 by conjugation x→gxgt. Take a standard
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Iwasawa decomposition KAN where K is the isotropy group of the
identity matrix I, SO(n), A is the set of diagonal matrices whose entries
are positive and whose determinant is 1, N is the set of upper triangular
matrices with 1’s on the diagonal. Since M fixes AI pointwise, Y aY t =
a for all a ∈ A and Y ∈ M . So Y must be a diagonal matrix whose
entries are ±1. Then MA is an abelian group. In general, a Iwasawa
decomposition as in the statement of the lemma is a conjugate of this
standard Iwasawa decomposition. See for example 2.17.27 and 2.17.23
of [20]. This finishes the proof. q.e.d.

Two complete totally geodesic subsets Y1, Y2 in a Hadamard man-
ifold are called parallel if their Hausdorff distance is finite, i.e., there
exists N > 0 such that d(p1, Y2) ≤ N for all points p1 ∈ Y1 and
d(p2, Y1) ≤ N for all points p2 ∈ Y2. In a real analytic Hadamard
manifold Z, if M is a complete totally geodesic subset of Z, then the
union of all totally geodesic submanifolds parallel to M is isometric to
M × N where N is a closed convex complete subset of Z (Lemma 2.4
of [1]). In our case it is particularly interesting when M is a singular
geodesic.

Lemma 3. If l is a singular geodesic of SL(n,R)/SO(n) whose
infinity point l(∞) corresponds to diag(λ, . . . , λ, λ1, . . . , λk) in p, then
the union of parallels to l is isometric to R

k × SL(n− k,R)/SO(n− k).
Proof. For a point y ∈ ∂X, let Y ∈ p correspond to y, i.e., γ(t) =

etY I · SO(n) is a geodesic starting from x0 = I · SO(n) and γ(∞) = y.
Let Zy = {g ∈ G |Ad(g)Y = Y } = {g ∈ G | getY = etY g for all t}. Then
for g ∈ Zy,

d(γ(t), gγ(t)) = d(etY x0, getY x0) = d(etY x0, etY gx0) = d(x0, gx0).

So γ(t) and gγ(t) are parallel for all g ∈ Zy. This shows that Zyx0 is
the union of parallels to γ(t) = l.

By conjugation, we may assume that Y = diag(λ, . . . , λ, λ1, . . . , λk),
i.e., λ1 = · · · = λn−k = λ. This represents a singular geodesic. Then for
g ∈ Zy, Ad(g)Y = Y means that gY g−1 = Y , so gij = (Y gY −1)ij . A
direct calculation shows that

(Y gY −1)ij =
λi
λj
gij .

So to get λi
λj
gij = gij , one should have gij = 0 if λi �= λj . We get Zy
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equal to [
M 0
0 µ

]

where M are (n−k)× (n−k) matrices and µ is a diagonal k×k matrix
so that detM × detµ = 1. When µ = I, M is SL(n − k,R). This
shows that the union of parallels to a singular geodesic is isometric to
R

k × SL(n− k,R)/SO(n− k). q.e.d.

This set which is the union of parallels to a singular geodesic will
appear in the proof of the next theorem. We say that a representation
is (non)parabolic if its image lies in a (non)parabolic subgroup.

Lemma 4. A representation ρ is nonparabolic if and only if Minρ

is a nonempty compact set. If ρ(Γ) is a discrete, parabolic subgroup with
Minρ �= ∅, then ρ(Γ) fixes two end points of some geodeisc l in X.

Proof. Suppose Minρ = ∅. Then there exists a sequence {xi} so that
xi→x ∈ ∂X and dρ(xi)→µ(ρ). This implies that d(ρ(s)xi, xi) ≤ µ(ρ)+ε
for all large i and s ∈ S. So each ρ(s) fixes x and so does the group
generated by S. Then ρ(Γ) is parabolic, which is a contradiction.

Now suppose Minρ is unbounded. Then there exists xi ∈ Minρ such
that xi→x ∈ ∂X. Now d(ρ(s)xi, xi) = µ(ρ) for all s ∈ S. So ρ(Γ) fixes
x by the same reasoning. The converse is similar.

For the second statement, let x be an ideal fixed point of ρ(Γ).
Since ρ is parabolic and by the assumption, Minρ is noncompact. Take
a geodesic l emanating from x and L = Minρ ∩ l noncompact. Choose
x0 ∈ L and take a generalized Iwasawa decomposition Gx = NAK,
see Proposition 2.17.5 (4) in [20]. Here Gx is a parabolic subgroup
fixing x, K is an isotropy subgroup of x0 (actually, it fixes l pointwise),
Ax0 is the union of parallels to l, and N is the horospherical subgroup
which is determined only by x. Note for any n ∈ N , nl and l are
never parallel. Furthermore d(ny, y)→0 as y ∈ l′ goes to x where l′

is a geodesic emanating from x. Let S be a fixed generating set of Γ
as before. For any g ∈ S, g = nak. If n �= id, as y ∈ L tends to x,
d(nak(y), y) = d(na(y), y) strictly decreases since al emanates from x.
This is a contradiction to the definition of Minρ. So any element in S
sends l to a parallel geodesic, particularly it fixes two end points of l.
So ρ(Γ) fixes two end points of l. q.e.d.

We will need the following theorem later in Section 10. The reader
may skip this theorem until Section 10.
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Theorem 1. Suppose Γ is centerless, not solvable and suppose
ρk→τ in R = Hom(Γ,PSL(n,R)) where ρk are nonparabolic discrete
faithful representations with Zariski dense images either in PSL(n,R)
or in PSO(n − 1, 1). Suppose ρk have lifts ρ̃k to SL(n,R). Then af-
ter passing to a finite index subgroup of Γ and conjugating ρk, there
exists a discrete faithful representation ρ such that either ρ is non-
parabolic into PSL(n,R) or parabolic into SL(n,R) acting on SL(n −
k,R)/SO(n− k), k = 1, . . . , n− 2 as a discrete faithful group. In either
case, ρk(resp. ρ̃k)→ρ and gkρg−1k →τ(resp. τ̃) for some sequence {gk}.

Proof. Firstly, by [26], τ is a discrete faithful representation.
More precisely, since the image ρk(Γ) is Zariski dense in a centerless
semisimple Lie group, ρk(Γ) has no nontrivial nilpotent normal sub-
groups (Lemma 1.2 of [26]). By Selberg’s lemma, there exists a finite
index subgroup Γ′ so that ρk(Γ′) has no torsion. Then τ(Γ′) is discrete
and faithful by the Lemma 1.1 of [26]. Since Γ′ is of finite index, τ(Γ) is
still discrete. If Z ⊂ Γ is a kernel of τ , ρk(Z) is a normal discrete sub-
group of ρk(Γ). Since ρk(Γ) is Zariski dense in a simple group, ρk(Z) is
a normal discrete subgroup of that simple group, so included in a center.
But since PSL(n,R) (or PSO(n− 1, 1)) has no center, it is trivial. This
shows that τ is faithful. By conjugating if necessary, we can asssume
that x0 ∈ Minρk

for all k. We have lim sup{µ(ρk) = dρk
(x0)} ≤ µ(τ).

Then since dρk
(x0) ≤ µ(τ) + ε for large k, ρk(S)x0 is contained in a

compact set of X, so one can extract a subsequence which converges
to ρ. After passing to a subsequence, we assume ρk→ρ. By the same
argument above ρ is discrete and faithful. If we use ρ̃k→ρ̃ in SL(n,R),
since ρ̃k covers ρk, ρ̃k is discrete and faithful and ρ̃ covers ρ. So ρ̃ is also
discrete and faithful.

Suppose ρ is parabolic, then Minρ is either empty or unbounded. In
this case we use ρ̃k→ρ̃ in SL(n,R). Abusing notations, we will use the
same notations ρk, ρ for ρ̃k, ρ̃. Since convex functions dρk

converge to
the convex function dρ uniformly, x0 ∈ Minρ. So Minρ is unbounded.
Theny by Lemma 4, ρ should fix end points of some geodesic l.

Take a set W which is the union of all parallels to l. Then W is
isometric to l×Y where Y is a closed convex complete subset ofX, see [1]
Lemma 2.4 (if l is nonsingular,W is a unique maximal flat containing l).
FurthermoreW is ρ(Γ) invariant. Take a Iwasawa decomposition KAN
where K is an isotropy group of x0, Ax0 is a maximal flat containing l
and N is a Nilpotent group fixing a Weyl chamber at infinity containing
l(∞).
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We divide the situation into two cases. First suppose l is nonsingular,
then W is a unique maximal flat containing l. Since ρ(Γ) leaves W
invariant, ρ(Γ) ⊂MA where M is a subgroup of K fixing l(±∞). Then
MA is an abelian group by Lemma 2. So ρ(Γ) is an abelian group,
which is a contradiction.

Now suppose l is singular. By Lemma 3,

W = R
k × SL(n− k,R)/SO(n− k)

if the singular direction is diag(λ, . . . , λ, λ1, . . . , λk) and it is a convex
simply connected totally geodesic subset of X (see Proposition 2.11.4
of [20]). Therefore ρ(Γ) can be conjugate to a subgroup of the form


M 0 0 0
0 λ1 0 0
0 0 · · · 0
0 0 0 λk




where M is a (n− k) × (n− k) matrix.
Since ρ(Γ)W = W and W is a symmetric space R

k × SL(n −
k,R)/SO(n − k), we can think of ρ(Γ) as an isometry group acting
on W . Since SL(n − k,R)/SO(n − k) has no Euclidean de Rham fac-
tor, ρ(Γ) preserves the splitting R

k × SL(n − k,R)/SO(n − k). Let
P : ρ(Γ)→Iso(SL(n−k,R)/SO(n−k)) be a projection. Then by Propo-
sition 7.2.2 of [20], P (ρ(Γ)) is either discrete or solvable.

Since Iso(SL(n − k,R)/SO(n − k)) has a finite number of compo-
nent, by taking a finite index subgroup of Γ, we can assume that
P : ρ(Γ)→SL(n − k,R). In this case explicitly P (g) = 1

(detM)1/n−kM

for g ∈ ρ(Γ) of the form [
M 0
0 µ

]
.

Suppose P has a kernel. Then any element in the kernel is of the form

cI 0 0 0
0 λ1 0 0
0 0 · · · 0
0 0 0 λk




so it is central in ρ(Γ). Now since ρ(Γ) is discrete and faithful, Γ has a
center, which is a contradiction. So Pρ is faithful.
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If Pρ(Γ) is discrete, we have a discrete and faithful representation
Pρ of Γ into SL(n−k,R) acting on SL(n−k,R)/SO(n−k) after passing
to a finite index subgroup of Γ. If Pρ(Γ) is solvable, Γ is solvable, which
is a contradiction.

So ρ is either a nonparabolic discrete faithful representation into
PSL(n,R) or a discrete faithful parabolic representation into SL(n,R)
acting on SL(n − k,R)/SO(n − k) as a discrete faithful group after
passing to a finite index subgroup of Γ. By the construction of ρ it is
obvious that ρk→ρ and gkρkg−1k →τ for some {gk}. This implies that
gkρg

−1
k →τ . This finishes the proof. q.e.d.

Since PGL(n,R) = PSL−(n,R) ∪ PSL(n,R) (see Section 3), note
that any holonomy representation of a convex real projective structure
can be lifted to PSL(n,R) up to the index two subgroup of π1(M), i.e,
there exists an index two subgroup Γ of π1(M) so that the restriction
of the holonomy representation to Γ has an image in PSL(n,R). The
following lemma shows that it can be lifted to SL(n,R).

Lemma 5. If ρ : π1(M)→PSL(n + 1,R) is a holonomy represen-
tation of a strictly convex real projective structure of a closed manifold
M , then it lifts to a representation ρ̃ into SL(n + 1,R) when n + 1 is
even.

Proof. Let M = Ω/ρ(π1(M)) where Ω is a convex domain in RP
n.

Let C be a component of two lifts of Ω in Sn. Let γ1, . . . , γk be a
generator of π1(M). Choose a matrix Ai out of ρ(γi) = ±Ai so that
AiC = C. Then clearly the group generated by Ai preserves C. If γ is
a word W (γi), set ρ̃(γ) =W (Ai). Suppose R(γi) is a relation of π1(M)
with respect to the generators γi. Then ρ(R) = ±I. If ρ̃(R) = −I,
ρ̃(R) = R(Ai) does not preserve C, which is impossible. So ρ̃(R) = I.
This shows that ρ̃ is a lift of ρ. q.e.d.

Due to this lemma we can think of a holonomy representation of a
convex real projective structure as a representation either in PSL(n,R)
or in SL(n,R) up to index two subgroup.

5. Openess of convex real projective structures

In this section we want to show that the set B(M) of strictly convex
real projective structures on M is open in the set of all real projective
structures RP

n(M) on a closed manifoldM . In [38], Koszul showed that
the space of affine structures on M whose developing image is a convex
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set containing no complete straight line (he called it hyperbolic) is open
in the space of affine structures on M . Later Vey [44] showed that such
a structure has a cone as the developing image on which a group of
affine transformations acts cocompactly and properly. But Benzécri [6]
showed that every RP

n manifoldM has a naturally associated flat affine
manifold M ×S1. By the construction, a strictly convex real projective
structure on M induces a convex affine structure on M × S1 whose
developing image is a cone. Since such affine structures on M × S1 is
open, B(M) is open in RP

n(M).

6. Proximality and invariant convex cones

An element g ∈ GL(n,R) is called proximal if λ1(g) > λ2(g) where
λ1(g) ≥ λ2(g) ≥ · · · ≥ λn(g) is the sequence of modules of eigenvalues
of g repeated with multiplicity. In this case the eigenvalue correspond-
ing to λ1(g) is real. Equivalently an element is proximal if it has an
attracting fixed point in RP

n−1. It is biproximal if g−1 is also proximal.
A proximal element is called positively proximal if the eigenvalue corre-
sponding to λ1(g) is a positive real number. An element g ∈ GL(n,R)
is called positively biproximal if it is biproximal and, the eigenvalue cor-
responding to λ1(g) and the eigenvalue corresponding to λn(g) have the
same sign. It is easy to see that a biproximal element leaves invariant a
convex cone with nonempty interior in RP

n−1 iff g is positively biproxi-
mal. See the remark after Lemma 4.5 of [3]. One says that Γ ⊂ GL(n,R)
is proximal if it contains a proximal element and positively proximal if
every proximal element in Γ is positively proximal. One says that a dis-
crete subgroup Γ divides a bounded convex cone C ⊂ R

n if it preserves
C and C/Γ is compact. The following theorem is due to [3] (Proposition
1.1 and Theorem 3.6).

Theorem A. If a discrete subgroup Γ ⊂ SL(n,R) divides an open,
bounded, strictly convex cone C ⊂ RP

n−1 which is not an ellipsoid
(in this case C is a real hyperbolic space), then Γ is Zariski dense in
SL(n,R). When C is an ellipsoid, Γ is Zariski dense in SO(n− 1, 1).

When M is a closed convex real projective surface with χ(M) < 0,
Kuiper [39, 6, 32] showed that:

(1) C is strictly convex and ∂C is at least C1. Either ∂C is a conic
in RP

2 or is not C1+ε for any 0 < ε < 1.



hilbert metric rigidity 203

(2) If A ∈ Γ is nontrivial, A is positively biproximal. Every homotopi-
cally nontrivial closed curve on M is freely homotopic to a unique
closed geodesic in the Hilbert metric.

7. length of a closed geodesic

In this section we calculate the length of a closed geodesic in terms
of eigenvalues of the corresponding element in the group. Let M =
C/Γ be a closed strictly convex real projective manifold where Γ ⊂
PGL(n,R) = Aut(RP

n−1). If l is a closed geodesic in M , then its lift
l̃ to C is an invariant geodesic of some element g ∈ Γ on which g acts
as a translation with the translation length l(g). One end point of l̃ is
a repelling fixed point of g corresponding to λn(g) and the other end
point is an attracting fixed point corresponding to λ1(g). Since the
attracting fixed point of g−1 is equal to the repelling fixed point of g, it
follows that g is positively biproximal. So the attracting fixed point in
PR

n−1 is the one dimensional eigenspace in R
n corresponding to λ1(g)

and the repelling fixed point is the eigenspace corresponding to λn(g).
Conjugating g, g is of the form

 ±λ1(g) ∗ 0
0 · · · 0
0 ∗ ±λn(g)




Then the attracting fixed point is [1, . . . , 0] (= ∞ on the extended
real line) and the repelling fixed point is [0, . . . , 1] (=0 on the extended
real line) in homogeneous coordinates. The invariant geodesic of g join-
ing these two points is [s, 0, . . . , 1 − s] = s

1−s , 0 ≤ s ≤ 1.

Proposition 1. If g corresponds to a closed geodesic l in M , then
the length of l is l(g) = log λ1(g) − log λn(g).

Proof. Since l(g) = d(x, gx) for any x on the invariant geodesic of
g,

l(g) = d([s, 0, . . . , 1 − s], [±λ1(g)s, . . . ,±λn(g)(1 − s)])

= log

∣∣∣∞− s
1−s

∣∣∣ ∣∣∣ λ1(g)s
λn(g)(1−s)

∣∣∣∣∣∣∞− λ1(g)s
λn(g)(1−s)

∣∣∣ ∣∣∣ s
1−s

∣∣∣ = log λ1(g) − log λn(g).

q.e.d.
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8. Marked length rigidity in Hilbert metric

In this section we prove the main theorem. We begin with a propo-
sition. Suppose M = C1/Γ1, N = C2/Γ2 are compact, strictly convex
real projective manifolds with the same marked length spectrum, i.e.,
there exists an isomorphism φ : Γ1→Γ2 such that l(g) = l(φ(g)) for all
g ∈ Γ1. Our goal is to show that Γ1 and Γ2 are conjugate.

Proposition 2. Suppose Γ1 and Γ2 have the same marked length
spectrum. Let Gi be the Zariski closure of Γi. It is either PSL(n,R) or
PSO(n − 1, 1) depending whether the projective manifold is hyperbolic
or not. Then the graph group Γ = {(g, φ(g)) | g ∈ Γ1} ⊂ G1 ×G2 is not
Zariski dense in G1 ×G2.

Proof. Let Ai be a fixed maximal abelian group in the Iwasawa
decomposition Gi = KiAiNi. Explicitly Ai can be taken as the set of
diagonal matrices. Let A+i be a fixed Weyl chamber, explicitly A+i
can be taken as the set of diagonal matrices (a1, . . . , an) such that
a1 ≥ a2 ≥ · · · ≥ an > 0 if Gi = PSL(n,R), as the set of diagonal ma-
trices (λ, 1, . . . , 1, 1λ), λ ≥ 1 when Gi = PSO(n− 1, 1). Denote gi, ai, a

+
i

Lie algebra of Gi, maximal abelian Lie subalgebra, Weyl chamber cor-
respondingly. Any element g ∈ Gi has a unique Jordan decomposition
g = ehu where e is elliptic, h hyperbolic and u unipotent. Then h is
conjugate to a unique element a in A+i . Let

λ : Gi→a+i

be a map defined by eλ(g) = a. In our case, λ(g) is a vector in a+i whose
coordinates are logarithms of the absolute values of eigenvalues of g in
a decreasing order. Now we appeal to Benoist’s Theorem [4] that if Γ
is a Zariski dense subgroup of a semisimple Lie group G, then the limit
cone which is the closure of the image λ(Γ) has nonempty interior in a.

A Cartan subalgebra of G1 ×G2 is a1 × a2. But Γ has the property
that

log λ1(g) − log λn(g) = log λ1(φ(g)) − log λn(φ(g)),

so its limit cone is contained in the closed subset of a1 × a2

{[(v1, . . . , vn), (w1, . . . , wn)] | v1 − vn = w1 − wn}.
But this set has empty interior in a1 × a2. So Γ is not Zariski dense.

q.e.d.

Now we prove our main theorem.
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Theorem 2. Let M and N be compact, strictly convex real projec-
tive manifolds with Hilbert metrics. If they have the same marked length
spectrum then they are projectively equivalent.

Proof. Set M = C1/Γ1, N = C2/Γ2 where Ci is a bounded strictly
convex cone and Γi ⊂ Gi where Gi = PSL(n,R) or PSO(n − 1, 1) de-
pending whether the manifold is hyperbolic or not. By Theorem A,
Γi is Zariski dense in Gi. Let φ : Γ1→Γ2 be an isomorphism pre-
serving the translation lengths. Then by the previous proposition,
Γ = {(g, φ(g))|g ∈ Γ1} is not Zariski dense in G1 × G2. Denote G
the Zariski closure of Γ in G1 × G2. Then G �= G1 × G2 by Proposi-
tion 2. Let Pi be the projection from G onto each factor Gi. Since Γ
normalizes G, Γi normalizes Pi(G). For Γi is Zariski dense, Pi(G) = Gi

since Gi is a simple Lie group. This shows that Pi is surjective.
Next goal is to show that Pi is injective. Consider kerP1. If its Lie

algebra is trivial, it is a discrete normal subgroup of {e} ×G2 = G2, so
it is included in the center of G2. Since G2 is centerless, kerP1 is trivial.
If its Lie algebra is not trivial, since kerP1 is normal in {e}×G2 = G2,
it must be {e} × G2 since G2 is simple. This fact and P1(G) = G1
would imply that G = G1×G2, which is a contradiction to the fact that
G �= G1 ×G2.

This shows that kerP1 is trivial. Similarly kerP2 is trivial. So Pi is
an isomorphism. Then ρ = P2 ◦ P−1

1 is a continuous isomorphism from
G1 to G2 which coincides with φ on Γ1.

Then it is a standard fact that if ρ : G1→G2 is a continuous iso-
morphism between two semisimple Lie groups G1 and G2 extending an
isomorphism φ, then ρ induces an isometry F between two symmetric
spaces G1/K1 and G2/K2 (where Ki is a maximal compact subgroup)
and φ is a conjugation by F . In our case, Gi is a simple Lie group, so Γ1
and Γ2 are conjugate by an isometry F in SL(n,R) ∪ SL−(n,R). This
shows that M and N are isometric with respect to the Hilbert metric
and projectively equivalent. q.e.d.

9. Cross-ratio on the ideal boundary of a cone

Bourdon [9] proved that a cross-ratio preserving homeomorphism
from the ideal boundary of a rank one symmetric space to the ideal
boundary of a CAT(−1) space can be extended isometrically to the
whole spaces. Using this fact, the author [34] proved that if a compact
quotient of a CAT(−1) space and a compact negatively curved locally
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symmetric manifold have the same marked length spectrum, then they
are isometric. The main idea there was to prove that the marked length
spectrum determines the cross-ratio on the ideal boundary of CAT(−1)
space. In this section, we show the same thing for compact, strictly
convex real projective manifolds.

Theorem 3. Let M = C1/Γ1 and N = C2/Γ2 be compact strictly
convex real projective manifolds. Then there is a cross-ratio preserving
equivariant homeomorphism between ∂C1 and ∂C2 iff M and N are
projectively equivalent.

To prove this theorem we introduce a rigorous definition of the cross-
ratio and several preliminary lemmas.

Let γ(t) be a geodesic ray. Let x be fixed. Then the function

t �→ d(x, γ(t)) − t

is monotone decreasing since for s < t,

d(x, γ(t)) ≤ d(x, γ(s)) + t− s

by triangle inequality. Define the Busemann function by

hγ(x) = lim
t→∞[d(x, γ(t)) − t].

Each level set of hγ is called the horosphere. Let β(t) be a geodesic with
β(∞) = γ(∞). If a = β ∩ h−1γ (t), b = β ∩ h−1γ (s), then d(a, b) = |t− s|.
Let X be a metric space such that given four distinct points on the
ideal boundary, there are four disjoint horospheres based at each point
and there exists a unique geodesic connecting two points on the ideal
boundary.

Definition 4. The cross-ratio of four point x1, x2, x3, x4 on the
ideal boundary of X is defined as follows. Let lij be a unique geodesic
connecting xi and xj . Let Hi be the four disjoint horospheres based at
xi. Let sij be the geodesic segment cut out by the horospheres Hi, Hj .
Then the cross-ratio of four points is defined by

[x1, x2, x3, x4] = l(s13) + l(s24) − l(s14) − l(s23)

where l(sij) is the length of the segment.

Note that the definition is independent of the choice of horospheres
by the property of horospheres.
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Suppose X has the property that if two geodesics l1, l2 share the
forward end point in the ideal boundary, then d(l1 ∩ Ht, l2 ∩ Ht) → 0
as t → ∞ where Ht are horospheres based at the forward end point
of geodesics shrinking to the end point. Then we have the following
proposition.

Proposition 3. Let X be a metric space as in Definition 4. Suppose
X has the property that if two geodesics l1, l2 share the forward end point
in the ideal boundary, then d(l1 ∩Ht, l2 ∩Ht) → 0 as t → ∞ where Ht

are horospheres based at the forward end point of geodesics shrinking to
the end point. Then the cross-ratio of four points x1, x2, x3, x4 on the
ideal boundary can be defined by

[x1, x2, x3, x4] = lim
n→∞{d(xn1 , xn3 ) + d(xn2 , x

n
4 ) − d(xn1 , xn4 ) − d(xn2 , xn3 )}

where x0 is a point in X and xni → xi and xni lies on the geodesic ray
from x0 to xi.

Proof. Let Hn
i be the horosphere based at xi and passing through

xni . Then by the assumption, d(xni , H
n
i ∩ lij) → 0 where lij is a unique

geodesic connecting xi and xj . So d(xni , x
n
j ) → l(snij) where snij is the

geodesic segment on lij cut out by horospheres Hn
i , H

n
j . Then the claim

follows from the definition. q.e.d.

We first prove that the difference between two asymptotic geodesics
tends to zero as they approach to the end point in a convex domain
equipped with the Hilbert metric. Note that by [5], the boundary of any
strictly convex domain which admits a compact quotient is necessarily
C1.

Proposition 4. Let Ω be a strictly convex domain in R
n with C1

boundary which is equipped with the Hilbert metric. Let l1(t), l2(t) be two
geodesic rays with the same forward end point P. There are sequences
{tn}, {sn} tending to the same ideal point P such that

lim
n→∞ d(l1(tn), l2(sn)) = 0.

Proof. First consider the case when n = 2. Since ∂Ω is C1, there
exists a tangent line l at P.

Thinking of l as the x-axis with origin equal to P, nearby part of
∂Ω around P is the graph of some convex C1 function f(x) since ∂Ω is
C1 and convex. Let lc be a horizontal line with y coordinate equal to c.
Denote the points at which lc meets with ∂Ω, l1, l2, ∂Ω in this order by



208 inkang kim

Figure 1: Two geodesic rays getting closer by the distance 0.

a∗c , ac, bc, b∗c . (See Figure 1.) Let l1 be the graph of y = βx, l2 the graph
of y = αx. Let the equation of the line connecting the origin and a∗c be
y = βcx, and let the equation of the line connecting the origin and b∗c
be y = αcx. Then clearly αc, βc → 0 as c→ 0. Then

d(ac, bc) = log
|bc − a∗c | |ac − b∗c |
|a∗c − ac| |bc − b∗c |

= log

∣∣∣ cα − c
βc

∣∣∣ ∣∣∣ cβ − c
αc

∣∣∣∣∣∣ c
βc

− c
β

∣∣∣ ∣∣∣ cα − c
αc

∣∣∣
= log

∣∣∣βc

α − 1
∣∣∣ ∣∣∣αc

β − 1
∣∣∣∣∣∣1 − βc

β

∣∣∣ ∣∣αc
α − 1

∣∣ .
Then as c→ 0,d(ac, bc) → 0. For the higher dimensional case, we take a
tangent hyperplane at P and do the same thing to conclude the claim.
We use only the fact that the tangent plane exists at P and that the
domain is strictly convex. q.e.d.

We have the following corollary.

Corollary 2. Let γ, β be two geodesics with γ(∞) = β(∞). Then
d(γ ∩ Ht, β ∩ Ht) → 0 where Ht is a horosphere shrinking to γ(∞) as
t→ ∞.

Proof. Suppose the distance is bounded below by some positive
number δ. Parameterize the geodesics so that β(0) and γ(0) lie on
the same horosphere. Then γ(t), β(t) lie on the same horosphere. So
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d(β(t), γ(t)) > δ. When t is large, by the above proposition, there is
a point xt on β such that d(xt, γ(t)) ≤ εt and limt→∞ εt = 0. By the
triangle inequality we have δ − εt < d(β(t), xt) < δ + εt. On the other
hand, we also have

d(γ(s), γ(t)) − εt < d(xt, γ(s)) < d(γ(s), γ(t)) + εt

for s� t. So we get

−t− εt < d(xt, γ(s)) − s < −t+ εt,
which implies that

−t− εt < hγ(xt) < −t+ εt.
This contradicts to the fact that d(xt, β(t)) > δ − εt when t is large so
that δ − εt > εt since hγ(β(t)) = −t. q.e.d.

With the aid of Proposition 3, one can define the cross-ratio on any
four points in X ∪ ∂X by

[x, y, z, w]
= lim
(xi,yi,zi,wi)→(x,y,z,w)

{d(xi, zi) + d(yi, wi) − d(xi, wi) − d(yi, zi)}.

Then [a, b, x, y] + [b, c, x, y] = [a, c, x, y]. Let x be a point on the
invariant axis of α, then

[ξ1, ξ2, η, α(η)] =
∑
n∈Z

[αn(x), αn(α(x)), η, α(η))]

=
∑
n∈Z

[x, α(x), α−n(η), α−n(α(η))]

= [x, α(x), ξ1, ξ2] = −2l(α)

where η is a point in ∂X, ξ1 and ξ2 are the repelling and the attracting
fixed points of α. This shows that if we know the cross-ratios on the
ideal boundary ∂X, we know the marked length spectrum. See [42, 33].

Conversely if we know the marked length spectrum, then we know
the cross-ratio on the ideal boundary [33]. The same proof there applies
to the Hilbert metric. See [33, Theorem 1].

Proposition 5. Let a, b be two biproximal isometries in X equipped
with the Hilbert metric. Let a−, b− be the repelling fixed points of a and
b, a+, b+ the attracting fixed points of a and b. Then

lim
n→∞ l(a

n) + l(bn) − l(bnan) = [a−, b−, a+, b+].
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Since any two points in the limit set can be approximated by the
repelling and attracting fixed point of some biproximal element [3] (Lem-
ma 2.5 and 2.6), [4] (Lemma 3.6) and the cross-ratio is a continuous
function, the marked length spectrum determines the cross-ratio on the
ideal boundary.

Proof of Theorem 3. Suppose there is a cross-ratio preserving equiv-
ariant homeomorphism between the boundaries of two strictly convex
domains. Then Γ1 and Γ2 have the same marked length spectrum since
the homeomorphism maps two end points of an invariant geodesic of
an element in Γ1 to the end points of the invariant geodesic of the cor-
responding element in Γ2. Then by our main theorem, M and N are
projectively equivalent.

Conversely if M and N are projectively equivalent, they have the
same marked length spectrum. Let φ : Γ1→Γ2 be an isomorphism in-
ducing projective equivalency and preserving marked length spectrum.
Then one can construct a cross-ratio preserving equivariant homeomor-
phism between the ideal boundaries. Such a map is constructed as
follows: first define the map f on the set of attracting fixed points of
Γ1 by sending attracting fixed points of elements in Γ1 to the attracting
fixed points of corresponding elements in Γ2. Then by Proposition 5, f
preserves cross-ratio. Since the set of attracting fixed points is dense in
the ideal boundary [3] (Lemma 2.5), for any x in the ideal boundary,
there exit attracting fixed points xi converging to x.

Put yi = f(xi). Since the ideal boundary is compact there is a
subsequence {yk} of {yi} which converges to y. Define f(x) = y. We
should check y is the only accumulation point of yi. Suppose yl converges
to another point z. Fix two distinct points p, q different from x which
are attracting fixed points. Set f(p) = t, f(q) = s. If we put f(xk) =
yk, f(xl) = yl, then by Proposition 5 we have

[p, xk, xl, q] = [t, yk, yl, s]

Since the cross-ratio is a continuous function, the limit of above cross-
ratios should be the same. But [p, xk, xl, q] tends to ∞ since xk, xl
converge to x while [t, yk, yl, s] tends to [t, y, z, s] which is finite. This is
a contradiction.

This way the map can be continuously extended to the whole ideal
boundary and by Proposition 5 this map is cross-ratio preserving. See
the argument in [33, 34] for details. q.e.d.
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10. The structure of the space of convex real projective
structures

In this section we want to focus on the space of real projective struc-
tures and prove an analogue of a Hitchin’s conjecture in dimension 3.
First note that PSL(n,R) acts on RP

n−1 as usual and also acts as an
isometry group on a symmetric space SL(n,R)/SO(n).

Definition 5. A subgroup Γ ⊂ PSL(n,R)(resp., GL(n,R)) is ir-
reducible if it does not leave invariant any proper projective subspace
(resp., any proper subspace) of RP

n−1(resp., R
n).

In [31, Section 5], Johnson and Millson showed that RP
n(M) has

dimension greater than or equal to r whereM is a closed real hyperbolic
manifold which contains r number of disjointly embedded two-sided
connected totally geodesic hypersurfaces. Actually they showed that
RP

n(M) contains an r-ball around the hyperbolic structure on M . As
in [25, section 3.7], from openness of the convex structures (see also
Section 5 of this article), small deformations of a hyperbolic structure
are still convex. This shows that B(M) has dimension at least r.

Now we want to show that

h : B(M)→Hom(π1(M),PSL(n,R))/PSL(n,R)

is injective. Let R = Hom(π1(M),PSL(n,R))/PSL(n,R) and let l :
R→R

π1(M) be defined by l(ρ) = (log λ1(ρ(γ)) − log λn(ρ(γ)))γ∈π1(M).
Then by our main theorem, l ◦ h is injective on B(M), and so is h
on B(M). From now on we denote by h the map restricted on B0(M)
where B0(M) is a component of B(M) containing a hyperbolic structure
onM . This shows that h : B0(M)→R is an embedding onto an open set.
We just remark that a holonomy representation of a strictly convex real
projective structure is discrete, faithful and Zariski dense (Theorem A)
in PSL(n,R).

Let M be a real hyperbolic closed manifold. A component of R

which contains the deformation space of hyperbolic structures on M is
called the Teichmüller component. Note that the deformation space of
hyperbolic structures on M is a point if the dimension of M is > 2.
The following theorem shows that h(B0(M)) is exactly equal to the
Teichmüller component. Such a theorem is known for surfaces [14, 15].
We begin with a proposition which guarantees that if the faithful, dis-
crete, nonparabolic representations come from the convex real projective
structures on a closed hyperbolic 3-manifold, then the limit representa-
tion is nonparabolic.
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Proposition 6. Let M be a closed hyperbolic 3-manifold. Sup-
pose ρk are discrete faithful holonomy representations corresponding to
strictly convex real projective structures on M and [ρk]→[τ ]. Then there
exists a discrete faithful nonparabolic representation ρ such that ρk→ρ
and gkρg−1k →τ for some sequence gk.

Proof. Since M is a closed hyperbolic 3-manifold, Γ = π1(M)
has no center and it is not solvable. Indeed if a nonpositively curved
manifold has a solvable fundamental group, it is flat [45]. Since ρk is a
holonomy representations of strictly convex real projective structures,
it is Zariski dense either in PSL(4,R) or in PSO(3, 1) by Theorem A. So
all the hypotheses of Theorem 1 are satisfied. It suffices to show that
ρ is nonparabolic in Theorem 1. Suppose ρ in Theorem 1 is parabolic
with ρ̃k→ρ as in the proof of Theorem 1 so that ρ(Γ) is contained in
the set of matrices of the form [

M 0
0 λ

]

where M is (4 − k)× (4 − k) matrix and λ = diag(λ1, . . . , λk), k = 1, 2.
Let Ωk be a strictly convex domain of S3 so that Ωk/ρ̃k(Γ) = M . Set
Ck be a cone over Ωk in R

4. Since ρ̃k(Γ) preserves a strictly convex cone
Ck, ρ̃k(Γ) is positively proximal by the Proposition 1.1 of [3]. So two
eigenvalues of ρ̃k(γ), γ ∈ Γ with the largest and the smallest norm are
positive. Now consider the group [Γ,Γ]. Then ρ([Γ,Γ]) is of the form[

N 0
0 I

]

where N ∈ SL(4 − k,R).

Case I) k = 2.
In this case ρ([Γ,Γ]) is contained in[

SL(2,R) 0
0 I

]
.

Since ρk(Γ) is Zariski dense and [Γ,Γ] is normal in Γ, ρk([Γ,Γ]) is
normal in a simple group PSL(4,R) or PSO(3, 1). Its Zariski closure is a
normal subgroup, which is either PSL(4,R) or PSO(3, 1). So ρk([Γ,Γ]) is
also Zariski dense. Then by the result of [3], PSL(4,R) has a property
that any Zariski dense subgroup H of PSL(4,R) has a Zariski dense
subgroup of H whose elements have the eigenvalues with the same sign.
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Note in the list for condition b after Theorem 1.6 of [3], it should read
p = 2, 4 for PSL(p,R). Take k0 large enough so that eigenvalues of ρ̃k(γ)
and the eigenvalues of ρ(γ) are near for each γ ∈ Γ and k > k0. Take
a Zariski dense subgroup ρk0(Γ

′) of ρk0([Γ,Γ]) whose elements have the
eigenvalues with the same sign. So all the eigenvalues of ρ̃k0(γ), γ ∈
Γ′ are positive. By Lemma 2 of [14], for any free group 〈a, b〉 and it
representation into SL(2,R), at least one of three a, b, a−1b−1 has a
negative trace. So choose any elements γ1, γ2 ∈ Γ′ so that they generate
a free group. Then one of the three elements ρ(γ1), ρ(γ2), ρ(γ−11 γ

−1
2 )

has eigenvalues (−λ1,−λ2, 1, 1) where λi > 0. Since ρ̃k(γi), k > k0
have all nearby eigenvalues, eigenvalues of ρ̃k(γi) converge to all positive
eigenvalues of ρ(γi). This is a contradiction.

Case II) k = 1.
In this case ρ([Γ,Γ]) is contained in the set of matrices of the form[

SL(3,R) 0
0 1

]
.

Let P : ρ(Γ)→Iso(SL(3,R)/SO(3)) be a homomorphism defined in
the proof of Theorem 1. It is shown there that Pρ is a discrete faithful
representation into SL(3,R) after passing to a finite index subgroup of
Γ. If Pρ([Γ,Γ]) is reducible in R

3, Pρ([Γ,Γ]) is conjugate to a subgroup
of SL(3,R) consisting of matrices either one of forms

∗ 0 0
∗ ∗ ∗
∗ ∗ ∗


 ,


∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗


 .

Then if we take Pρ([[Γ,Γ], [Γ,Γ]]), it is of the form
1 0 0
∗ a b
∗ c d




where the 2 by 2 block matrix is in SL(2,R). Then we can use the same
method as in Case I. So suppose Pρ([Γ,Γ]) is irreducible in R

3. Then
Pρ([Γ,Γ]) is a nonparabolic subgroup of SL(3,R)/SO(3) by Corollary 1.
Then its Zariski closure in SL(3,R) is reductive [8]. By Lemma 2.6
(a) of [3], Pρ([Γ,Γ]) is proximal. Since ρ̃k is positively proximal, any
proximal element in Pρ([Γ,Γ]) is positively proximal. So Pρ([Γ,Γ]) is
positively proximal. Then by Proposition 1.1 of [3], Pρ([Γ,Γ]) leaves
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invariant a strictly convex cone Ω in R
3. Since [Γ,Γ] is normal in Γ, for

any γ ∈ Γ, α ∈ [Γ,Γ], there exists β ∈ [Γ,Γ] such that γα = βγ. So
βγ(Ω) = γ(Ω). This shows that

� = ∩γ∈Γγ(Ω)

is a Γ invariant strictly convex cone in R
3. If � has empty interior,

Pρ([Γ,Γ]) would leave invariant a proper subspace of R
3, so cannot be

irreducible. So � has nonempty interior in R
3. By Proposition 1 of

[44], the action of Pρ(Γ) is proper in �. Since Pρ is a faithful discrete
representation in SL(3,R) after passing to a finite index subgroup, we
can assume Γ is equal to its finite index subgroup and �/Pρ(Γ) is a
manifold whose fundamental group is Γ. If it is a compact manifold,
there should be a nontrivial dilation in Pρ(Γ), see Lemma 3.7 (b) of [3].
Since SL(3,R) cannot have a nontrivial dilation, this does not happen.
Since two 3-manifoldsM and �/Pρ(Γ) have the universal cover R

3 and
have the same fundamental group, they should be homotopy equivalent.
If �/Pρ(Γ) is noncompact, it is not homotopy equivalent to M , again
a contradiction. This shows that ρ cannot be parabolic. q.e.d.

We give a lemma before we prove the theorem. This lemma seems
known to the experts but not available in references. So we give a sketch
of a proof here. When Γ is a finite group, it is proved in [18, Corollary
30.14].

Lemma 6. Let ρ, φ : Γ→SL(n,R) be two representations with the
same character. If ρ is irreducible, then they are GL(n,R)-conjugate.

Proof. Let A be a real group algebra of Γ. Let ρ and φ be extensions
to A into M(n,R) with the same notations. Let χρ = trace ◦ ρ be a
character of ρ. Then one can show (private communication with Hyman
Bass) that the set of Jordan-Hölder factors of the corresponding A-
modules, Vρ and Vφ, are isomorphic, counted with multiplicity iff χρ =
χφ.

A proof of the above claim goes as follows:

Step I) Replace ρ and φ by the direct sum of their Jordan-Hölder
factors. So assume both of them are semisimple.

Step II) Replace A by its quotient by the intersection of Kerρ and
Kerφ. This reduces the problem to the case when A is a finite dimen-
sional semi-simple algebra.
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Step III) One could even make a base change to the algebraic closure
of R (where it suffices to prove the result) and so assume that A is a
finite product of full matrix algebra over R.

Step IV) Finally one can check the result by evaluating the two char-
acters on the minimal central idempotents of A using Burnside lemma,
which gives the dimensions of the isotypic components of the two rep-
resentation modules.

In particular, they have the same number of composition factors.
So φ is irreducible also. Once we know that both representations are
irreducible with the same character, it is known that they are conjugate
in GL(n,R). q.e.d.

The following theorem is a higher-dimensional analogue of the main
result of [14]. After this paper was written, a general case was an-
nounced in [5].

Theorem 4. The holonomy map h : B0(M)→R is a homeomor-
phism onto the Teichmüller component if M is a closed hyperbolic 3-
manifold. The same thing is true even for a hyperbolic closed 3-orbifold.

Proof. Denote R the set of representations from π1(M) to PSL(4,
R) and π : R→R the natural projection. We know h(B0(M)) is open,
so it suffices to show that it is closed. Suppose [φk]→[τ ] in R where
[φk] ∈ h(B0(M)). Since φi is Zariski dense either in PSL(4,R) or in
PSO(3, 1), it is nonparabolic.

Arrange by conjugation that φi→φ and gkφg−1k →τ in R with π(φi) =
[φi] ∈ h(B0(M)) and φ is nonparabolic, discrete and faithful by Propo-
sition 6. Then by Corollary 1, φ is irreducible in PSL(4,R). Let
Ωi/φi(π1(M)) be the corresponding projective structures. We may as-
sume that Ωi is situated in S3. Then since S3 is compact, Ωi→Ω in the
Hausdorff topology and Ω is convex. Clearly Ω is left invariant by φ. If
Ω is a hemisphere or has an empty interior in S3, φ would leave invariant
a proper projective subspace, which contradicts to the irreducibility of
φ. So Ω/φ(π1(M)) is a manifold homotopy equivalent to M . Actually
by [23], it is homeomorphic to M . By Theorem 3 in [5], it is strictly
convex. But since φi→φ, [φ] ∈ h(B0(M)).

Consider lifts φ̃i to SL(4,R) so that φ̃i→φ̃. Abusing notations, we
will denote them by φi, φ again. Then gkφg−1k →τ implies that τ and φ
have the same character. By the above lemma, τ and φ are conjugate
by an element in SL(4,R) ∪ SL−(4,R). So φ and τ represent the same
strictly convex real projective structures on M .
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So h(B0(M)) is open and closed in R. This finishes the proof. For
the statement of an orbifold, just note that Theorem 1 and Proposition 6
remain true for a group with torsion and the holonomy theorem is also
true for an orbifold [40]. q.e.d.
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C.R.A.S. 330(8) série I (2000) 647–650.

[20] P. Eberlein, Geometry of nonpositively curved manifolds, Chicago Press, 1996.

[21] D. Egloff, Some new developments in Finsler geometry, Ph.D thesis, Freiburg
(Schweiz), 1995.
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